
ACS APPLIED MATERIALS & INTERFACES

Growth of Large-Scale and Thickness-Modulated MoS₂ Nanosheets

Nitin Choudhary,[†] Juhong Park,[†] Jun Yeon Hwang,[‡] and Wonbong Choi^{*,†}

[†]Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States [‡]Carbon Convergence Materials Research Center, Korea Institute of Science and Technology, Jeonbuk, 565-905, South Korea

ABSTRACT: Two-dimensional MoS_2 is a promising material for next-generation electronic and optoelectronic devices due to its unique electrical and optical properties including the band gap modulation with film thickness. Although MoS_2 has shown excellent properties, wafer-scale production with layer control from single to few layers has yet to be demonstrated. The present study explored the large-scale and thicknessmodulated growth of atomically thin MoS_2 on Si/SiO_2 substrates using a two-step sputtering—CVD method. Our process exhibited wafer-scale fabrication and successful

thickness modulation of MoS_2 layers from monolayer (0.72 nm) to multilayer (12.69 nm) with high uniformity. Electrical measurements on MoS_2 field effect transistors (FETs) revealed a *p*-type semiconductor behavior with much higher field effect mobility and current on/off ratio as compared to previously reported CVD grown MoS_2 -FETs and amorphous silicon (a-Si) thin film transistors. Our results show that sputter–CVD is a viable method to synthesize large-area, high-quality, and layer-controlled MoS_2 that can be adapted in conventional Si-based microfabrication technology and future flexible, high-temperature, and radiation hard electronics/optoelectronics.

KEYWORDS: MoS₂, PVD-CVD, thin films, field effect transistors

1. INTRODUCTION

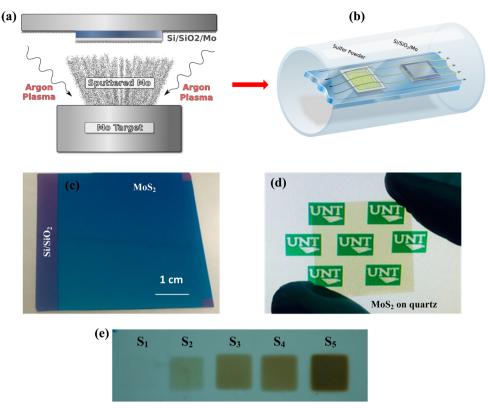
In recent years, 2D materials like graphene and transition-metal dichalcogenides (TMDs) are gaining a wealth of attention from the scientific community and industry for being the promising materials for next-generation ultrathin electronic and optoelec-tronic devices.¹⁻³ The most interesting feature of these materials is that the bulk of these materials are composed of layered structures with strong covalent bonding within each layer and weak van der Waals forces between the adjacent layers. Therefore, single- or few-layer nanosheets of these materials can be obtained by using mechanical exfoliation using adhesive tapes.⁴ Graphene is fundamentally and technologically interesting for a variety of applications with remarkable electronic properties; e.g., its massless Dirac fermions have an effective speed of light $\nu_F \approx 10^6 \text{ ms}^{-1}$ and a room temperature mobility of 200,000 cm² V⁻¹ s⁻¹ in addition to its flexibility and high transparency.⁵ However, the absence of a band gap in graphene leading to a very low $I_{on/off}$ ratio limits its broader use for applications in electronics such as logic devices.⁶ With this consideration, TMDs, in particular, molybdenum disulfide (MoS₂), have recently emerged as a great alternative to graphene that offers a better solution of fabricating highperformance electronic devices as they are intrinsic semiconductors and possesses unique properties of quantum confinement and thickness-dependent band gap, i.e., changing from 1.3 to 1.9 eV for bulk (indirect band gap) and single-layer (direct band gap) MoS₂, respectively.^{7,8} Therefore, MoS₂ could complement graphene and find its unique applications in flexible electronics, high-temperature, and radiation hard electric and optoelectric devices. There have been several

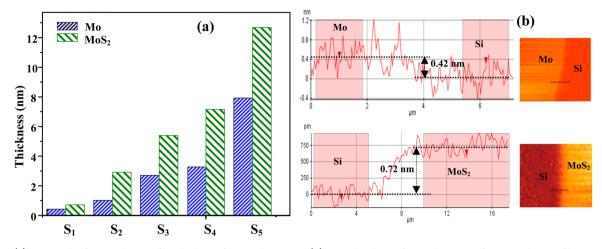
efforts in fabricating single-layer (SL) MoS₂ using a mechanical exfoliation method, but a low value of mobility on SiO₂ substrates typically 0.01-10 cm² V⁻¹ s⁻¹ was found.^{7,9} Wang et al.¹⁰ studied mechanically exfoliated MoS_2 on SiO_2 and found the room-temperature mobility of $\sim 10 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ for bilayer FETs, which is substantially lower than the measured 200 cm² V⁻¹ s⁻¹ of the bulk $MoS_2^{.7}$ The very low mobility is believed to be due to the charge disorder caused by unwanted chemical bonding and/or roughness at the interfaces. However, the use of other gate dielectric materials such as HfO2 and Al₂O₃ by several research groups had demonstrated much higher mobility values.^{11,12} However, the complicated process of exfoliating single-layer MoS_2 with an additional high-k dielectric layer may significantly limit its compatibility with commercial fabrication. Besides, the traditional mechanical exfoliation method lacks in the formation of large-scale SL and few-layer MoS₂ films, limiting its use for widespread applications. Therefore, the large-scale synthesis of high-quality single- or few-layer MoS₂ is still a challenge.

For synthesizing large-area MoS_2 thin films, several research groups attempted a wide range of methods, including thermal evaporation, van der Waal epitaxy (VDWE), sputtering, pulsed laser deposition (PLD), and electron beam evaporation (EBE).^{13–16} However, most of these techniques have been reported to produce MoS_2 in morphologies other than layered (e.g., nanoparticles, nanorods, and nanotubes). This is mainly

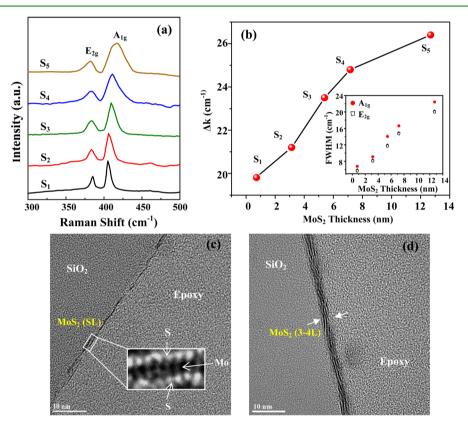
Received:September 10, 2014Accepted:November 10, 2014Published:November 10, 2014

ACS Applied Materials & Interfaces




Figure 1. Schematic diagram of two-step (a) sputtering and (b) CVD method for the growth of MoS_2 thin films. Optical images of large-area MoS_2 growth on (c) Si/SiO₂ and (d) transparent substrate. (e) Optical contrast of MoS_2 films for samples S_1 - S_5 shows different thicknesses.

due to the fact that such approaches produce many nucleation sites and the resultant film growth is initiated from these sites. Techniques like VDWE and molecular beam epitaxy (MBE), at very low vacuum and controlled deposition rates, can produce ordered 2D layered structures,^{14,17} but they are rather expensive. Other methods have been studied to produce MoS₂, including liquid phase deposition, liquid exfoliation, laser thinning, solid state reactions, and hydrothermal methods, but they take several preparation processes and are useful only for the production of composites and hybrid dispersions.¹⁸⁻²⁰ So far, chemical vapor deposition has been demonstrated as the most practical method of synthesizing large-area and highquality graphene, boron nitride, and 2D TMD nanosheets.^{21,22} A direct growth of MoS₂ monolayers can be achieved on various substrates by using the vapor-phase reaction of MoO₃ and S powders in a CVD system. Najmaei et al.²³ synthesized MoS₂ atomic layers on Si/SiO₂ substrates by using this method and reported an average mobility and maximum current on/off ratio of 4.3 cm² V⁻¹ s⁻¹ and $\sim 10^6$, respectively. However, the main concern of this method is the formation of MoS₂ monolayer crystal flakes on the substrates rather than the formation of a continuous MoS₂ layer, and sometimes, the reaction normally leads to MoS2 nanoparticles or nanorod structures with formation of byproducts like MoO2 during the synthesis.^{24,25} Zhan et al.²⁶ grew large-area MoS₂ films via ebeam evaporation and CVD methods and found a p-type conduction but with very poor mobility in the range of 0.004- $0.04 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. Recently, Yu et al.²⁷ developed a new method that precisely controls the number of MoS_2 layers over a large area by using MoCl₅ and sulfur as precursor materials in a CVD at high temperature. However, the field effect mobility of charge carriers in their device was found to be very low (0.003 $0.03 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$). In considering the theoretical estimation that the energy band gap change of MoS_2 with thickness, it is, therefore, imperative to develop a suitable deposition method for the growth of thickness-modulated films while demonstrating high-quality, uniform, and continuous films over a large area exhibiting excellent electrical properties.


Here, we present a simple and scalable two-step sputtering— CVD reaction approach that can produce high-quality, largescale, and thickness-modulated MoS₂ atomic layers on a Si/ SiO₂ substrate. The presence of single layers over a 2" wafer was confirmed by Raman mapping, AFM, and HRTEM images. Electrical measurements demonstrated a *p*-type semiconductor behavior with significantly high mobility and $I_{on/off}$ ratio as compared to exfoliated and other CVD grown MoS₂ films on silicon substrates. This method is compatible to the conventional semiconductor process and can be extended to other TMDs and arbitrary substrates by transferring MoS₂ layers, including flexible substrates for flexible electronic applications.

2. RESULTS AND DISCUSSION

Figure 1a,b illustrates the schematic diagram of our two-step synthesis method that involves the deposition of Mo films with different thicknesses on Si/SiO₂ substrates using magnetron sputtering, followed by their sulfurization in a CVD chamber. Figure 1c,d shows optical images of uniform and large-scale growth of MoS₂ films using our two-step sputtering–CVD method. Figure 1e shows the optical images of MoS₂ films with different thicknesses (S₁–S₅) grown on a transparent quartz substrate. The optical contrast in different samples clearly shows the variation in MoS₂ thickness. The number of atomic layers in MoS₂ thin films can be identified from measuring the thickness by an atomic force microscope (AFM). Figure 2a

Figure 2. (a) Bar graph of Mo and MoS₂ film thickness for samples S_1-S_5 . (b) AFM height profiles and images of a Mo and MoS₂ film on a Si/SiO₂ substrate (sample S₁).

Figure 3. (a) Raman spectra of MoS₂ thin films corresponding to samples S_1-S_5 . (b) Difference between the in-plane (E_{2g}^1) and out-of-plane (A_{1g}) Raman modes (Δk) with increasing MoS₂ film thickness: Inset shows the Raman peak FWHM of E_{2g}^1 and A_{1g} modes. Cross-sectional HRTEM images of (c) sample S_1 (inset shows the SL MoS₂ structure) and (d) sample S_2 .

shows the thickness bar chart for Mo and MoS₂ thin films corresponding to samples S₁–S₅. The thickness of MoS₂ films as estimated by AFM height profiles was found to be 0.72, 3.01, 5.40, 7.16, and 12.69 nm corresponding to samples S₁, S₂, S₃, S₄, and S₅, respectively. The cross-sectional height in Figure 2b reveals that the thickness of MoS₂ film for sample S₁ is ~0.72 nm, which typically corresponds to one atomic layer of MoS₂ based on previous reports for a monolayer MoS₂ on a Si/SiO₂ substrate.²⁸ It is now well-known that the difference between the in-plane (E¹_{2g}) and out-of-plane (A_{1g}) Raman modes (Δk) is an appropriate quantity to assign the number of MoS₂ layers on a variety of substrates.^{29,30} Figure 3a shows the Raman spectra of MoS_2 films with different thicknesses, measured at 532 nm excitation laser line. For sample S_1 , the two Raman characteristic bands at 405.2 and 385.5 cm⁻¹ corresponding to A_{1g} and E_{2g}^1 vibration modes show a peak frequency difference of 19.7 cm⁻¹, which evidences the existence of monolayer MoS_2 .^{26,27} The higher value of Δk as compared to their exfoliated counterparts could be related to crystalline imperfection due to smaller crystalline grains ranging from 20 to 80 nm in the as-synthesized thin film.³¹ It is apparent from the Raman spectra of samples S_2-S_5 that the E_{2g} and A_{1g} peaks shift apart from each other with increasing MoS_2 thickness, which, in turn, increases the frequency difference (Δk) of the

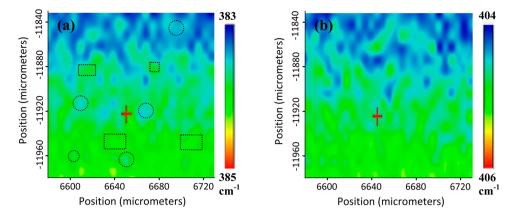


Figure 4. Raman mapping images of (a) E_{2g}^{1} and (b) A_{1g} frequencies for a 150 μ m × 150 μ m area for sample S_{1} .

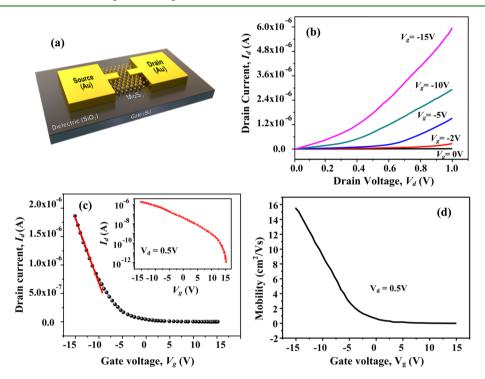


Figure 5. (a) 3D view of the MoS₂ FET. (b) Room-temperature output (I_d-V_d) characteristics for sample S₂ as a function of gate bias V_g from 0 to -15 V. (c) Drain-source current I_d as a function of back-gate voltage V_g at fixed $V_d = 500$ mV with linear fit of the data to calculate field effect mobility. Inset shows the I_d-V_g curve plotted in logarithmic scale as a function of back-gate voltage V_g at fixed $V_d = 500$ mV. (d) Range of field effect mobility (μ) as a function of gate voltage for sample S₂.

synthesized thin films (Figure 3b), consistent with what was observed on exfoliated MoS_2 .^{26,31} It is also worth noting that the full width at half-maximum (FWHM) of the Raman peaks increases with increasing MoS₂ thickness, as shown in the inset of Figure 3b. The lower value of FWHM in the case of samples S_1 and S_2 represents the high structural quality in our MoS₂ films.³² To further confirm the quality and number of MoS₂ layers, HRTEM was performed, and Figure 3c,d shows the cross-sectional views of MoS₂ layers on Si/SiO₂ substrates for samples S₁ and S₂, respectively. The thickness of the MoS₂ layer extracted from HRTEM was found to be 0.69 \pm 0.02 nm for sample S_1 , which confirms the formation of a monolayer, whereas sample S₂ shows a clear stacking of 3-4 MoS₂ layers. Inset of Figure 3c clearly shows the structure and formation of SL MoS₂. The results obtained by HRTEM are found in well agreement with our AFM height profiles and Raman spectra. The formation of voids or discontinuity in SL MoS₂ layer

(Figure 3c) could be attributed to very low deposition time for Mo atoms to reach substrate surface with sufficiently high energy.

It is difficult to obtain uniform single-layer (SL) MoS₂ over the entire substrate after sulfurization of deposited Mo films (S₁) for the reasons stated in the Introduction section of this paper. To ascertain the uniformity of SL MoS₂ for sample S₁, Raman mapping of E¹_{2g} and A_{1g} frequencies was collected over a wide area of 150 μ m × 150 μ m, as shown in Figure 4a,b, respectively. We noted that the average peak spacing between E¹_{2g} and A_{1g} calculated from the areas marked as dotted circles was found to be ~19.7 cm⁻¹, indicating the presence of monolayers, while the areas shown in rectangles exhibit an average peak spacing of ~21.2 cm⁻¹, which represents approximately two layers of MoS₂. In addition, our results are consistent with the Raman mapping analysis of Lee et al.²⁹ and Zhan et al.²⁶ that shows a blue shift for E¹_{2g} and a red shift for

Table 1. Comparison of Various MoS ₂ FETs Fabricated on Si/SiO ₂ Subst	trates
--	--------

S. no.	method	field effect mobility ($cm^2 V^{-1} s^{-1}$)	ON/OFF ratio	reference
1	sputtering-CVD	12.24	1.56×10^{6}	this work
2	CVD	0.02	$\sim 10^4$	44
3	CVD	0.003-0.03	$\sim 10^{3}$	27
4	thermolysis	6.0	$\sim 10^{6}$	45
5	CVD	4.3	6.0×10^{6}	23
6	exfoliated	1.5	$\sim 10^2$	46
7	exfoliated	3.0		9
8	e-beam-CVD	0.004-0.04		26
9	CVD	0.03-0.23	~10 ⁵	47
10	exfoliated	0.1-10	1×10^{6}	7
11	exfoliated	10-15	10 ⁷	10
12	CVD	17	10 ⁸	48

 A_{1g} with the decrease in MoS₂ film thickness. The thickness variation for sample S₁ was in the range of 0.65–1.32 nm, as confirmed by AFM. Hence, by employing AFM, HRTEM, and Raman analyses, we confirmed the formation of single-layer MoS₂ over 2" wafers with a uniform area of 10–15 μ m², which is still a larger size than exfoliated MoS₂.^{33–35} The defects observed in monolayer MoS₂ (sample S₁) could be attributed to the layer-and-island growth modes of Mo films.³⁶ However, the films were found to be uniform and continuous over an area of 2 in. for sample S₂ and S₃.

After the growth and characterization of the MoS₂ films with different thicknesses on Si/SiO₂ substrates, their electrical properties were evaluated by fabricating MoS₂ field effect transistor (FET) devices with 50 nm thick Au as source and drain electrodes, 300 nm thick SiO₂ served as the dielectric layer, while doped silicon was used as the back gate. Figure 5a shows the schematic view of the transistor. The electrical measurement on sample S1 showed a very high resistance without any indication of FET behavior or gate biasing effect. It could be attributed to the large spatial constraints imposed by the substrates for very thin layers of MoS₂ film and discontinuity or void formation for sample S₁. It was observed that an increase in MoS_2 thickness up to 2.92 nm for sample S_2 results in large-area and uniform growth of 3-4 MoS₂ atomic layers exhibiting a good FET behavior with pronounced gate bias modulation. Figure 5b shows the typical output characteristics, i.e., drain current versus drain voltage $(I_d - V_d)$ as a function of gate voltage varying from 0 to -15 V. It is evident from the figure that the $I_d - V_d$ curve exhibits negligibly very low currents at zero gate voltage ($V_g = 0$), whereas a significant increase in drain current was observed with increasing gate voltage up to -15 V. Figure 5c shows the dependence of drain current on the back-gate voltage $(I_d - V_g)$ at a drain-source voltage of 0.5 V for sample S2. The lack of drain current saturation in the transfer characteristics $(I_d - V_{\sigma})$ of sample S₂ could be attributed to the presence of a thick SiO₂ back-gate dielectric. It is worth to note that the transfer characteristic of sample S₂ represents a *p*-type behavior differently from the naturally grown MoS₂ crystal that is an n-type semiconductor.^{9,37} The *p*-type behavior in our layered MoS_2 could be due to the presence of localized trap states that are expected to present at the interface of the Si/SiO₂ substrate and MoS₂ film, which tends to relocate the Fermi level of the SiO_2/MoS_2 system just below the valence band maxima, making the system a *p*-type semiconductor.³⁸ The trap states might have originated from the immobile ionic charges, SiO₂ surface oxygen dangling bonds or foreign impurities presented at the SiO₂/MoS₂

interface during MoS₂ synthesis.³⁹ The defects present at the SiO₂ and MoS₂ interface could also be due to the Mo diffusion into SiO₂ when it was sulfurized in the CVD furnace at the high temperature of 600 °C. There are several other reports showing the *p*-type conductivities in ultrathin MoS₂ layers deposited on SiO₂. Zhan et al.²⁶ also reported a *p*-type behavior in CVD grown MoS₂ layers on Si/SiO₂ substrates. Zeng et al.²⁸ fabricated single-layer MoS₂ by a lithiation process and observed a p-type doping on the Si/SiO₂ substrate. There may be a possibility of doping by creating Mo and/or S vacancies in MoS₂ layers and introducing dopants on MoS₂ films,^{40,41} but those vacancies might be vulnerable to deep trap states in the MoS₂ band gap.⁴² Therefore, the conducting behavior of MoS₂ seems to depend on the experimental details and substrate conditions; hence, more detailed experimental and theoretical studies should be done to understand the origin of current polarity (n- or p-type) in 2D MoS₂ thin films.

The drain current I_d for sample S_2 was replotted on a logarithmic scale as a function of V_g (inset of Figure 5c). At $V_g = +15$ V, the MoS₂ channel of the FET was found to be pinched off with an OFF-state $I_d \sim 1.18 \times 10^{-12}$ A while the ON-state current I_d at $V_g = -15$ V was approximately 1.86 $\times 10^{-6}$ A, yielding a corresponding current on/off ratio $\sim 1.57 \times 10^6$. The field effect mobility of this FET was calculated by using the formula⁴³

$$\mu = \left(-\frac{L}{WC_{\rm ox}}\right) \left(\frac{1}{V_{\rm d}} \frac{\Delta I_{\rm d}}{\Delta V_{\rm g}}\right) \tag{1}$$

where $\Delta I_{\rm d}/\Delta V_{\rm o}$ was determined from the slope of a linear fit of the data from the $I_d - V_g$ curve. V_d : drain-source voltage (0.5 V); L: gate length (10 μ m); W: device width (30 μ m); $C_{ox} = \varepsilon_o \varepsilon_r / d$ is the gate insulator capacitance, for SiO_2, $\varepsilon_{\rm o}$ = 8.854 \times 10 $^{-12}$ F/ m, $\varepsilon_{\rm r}$ = 3.9, thickness of dielectric, d = 300 nm. The average value of field effect mobility was determined to be 12.24 \pm 0.741 cm² V⁻¹ s⁻¹. Figure 5d shows the range of field effect mobility values as a function of gate voltage for sample S₂. Table 1 compares the $I_{\text{on/off}}$ ratio and field effect mobility of our two-step grown MoS₂ device with previously reported mechanically exfoliated and CVD grown MoS_2 FETs on Si/SiO₂ substrates.^{7,9,10,23,26,27,44-48} A significant improvement in the transistor parameters can be noticed in our p-type MoS₂ FETs as compared to other research groups' devices. It is worth to note that our result from polycrystalline MoS₂ film is almost as good as that of single crystal MoS2.48 Also, the field effect mobility in our MoS₂ FETs is much higher than that in the commercially available thin film FETs based on amorphous

silicon (a-Si) and organic materials.⁴⁹⁻⁵² A similar behavior of the output $(I_d - V_d)$ and transfer $(I_d - V_g)$ characteristics exhibiting p-type conduction was observed for sample S₃. The value of the I_{on/off} ratio and average field effect mobility for sample S₃ were found to be 5.7×10^4 and 0.44 ± 0.062 cm² V⁻¹ s^{-1} , respectively. With a further increase in MoS₂ film thickness for sample S_4 (7.16 nm) and S_5 (12.69 nm), a significant drop in MoS₂ resistance showing a metallic type behavior was observed in the FET characterization. We believe that 100% Mo was not converted to MoS₂ during sulfurization at higher thickness of Mo films. The theoretical MoS₂ thickness was calculated by considering a change in lattice parameter of Mo $(\sim 3.147 \text{ Å})$ to MoS₂ $(\sim 12.29 \text{ Å})$ by sulfurization. The thickness of MoS₂ corresponding to S₁, S₂, S₃, S₄, and S₅ was estimated to be 1.11, 4.18, 6.44, 14.11, and 34.99 nm, respectively. It can be observed that the theoretical and experimental values (Figure 2) of MoS₂ thickness were in agreement up to sample S₃, but there was a large deviation when Mo film thickness increases for sample S4 and S5 that could be attributed to the partial sulfurization of Mo at higher thicknesses.

3. CONCLUSIONS

In conclusion, we succeeded in fabricating large-area, thicknessmodulated MoS₂, varying from single- to few-layer MoS₂ films on Si/SiO₂ substrates using a combination of magnetron sputtering, followed by chemical vapor deposition. Raman spectra, AFM height measurement data, and HRTEM images demonstrated the presence of single-layer MoS₂ over an area of 2 in. with the domain size of 10-15 μ m². The electric measurement for the bottom-gate transistor shows a dominant p-type semiconductor behavior with the high current on/off ratio of 1.57×10^6 and a high field effect mobility of 12.24 \pm $0.741\ \text{cm}^2\ \text{V}^{-1}\ \text{s}^{-1}.$ Our results demonstrated an important step toward device fabrication with controlled MoS₂ synthesis. These results suggest that large-area growth of MoS₂ atomic layers with *p*-type conduction would increase the compatibility and integration of these TMDs in current nano- and micro-p-FET applications and also open avenues in flexible and hightemperature radiation hard electronic and optoelectronic devices.

4. EXPERIMENTAL METHODS

Sample Growth. In our two-step method, the first step involves the synthesis of Mo thin films at room temperature on (100) oriented N-type (as doped, resistivity < 0.005 Ω .cm) silicon substrates coated with a 300 nm thick SiO₂ layer. The deposition time was varied from 4 to 180 s to obtain a batch of Mo films with increasing thicknesses. A high-purity (99.99%) Mo metal target of 50 mm in diameter was used for sputtering Mo thin films. The substrates were initially cleaned thoroughly with acetone in an ultrasonic bath, followed by cleaning in ethanol, methanol, and DI water. The substrates were fixed on the heater, and the chamber was evacuated to a vacuum level of 10^{-7} Torr. Before every sputtering run, the target was presputtered for 5 min to ascertain the same state of Mo target for each sample. In the second step, magnetron sputtered Si/SiO₂/Mo films were subsequently placed in a low-pressure chemical vapor deposition (LPCVD) system (Graphene Square CVD) equipped with a 4 in. diameter quartz tube furnace. A ceramic boat containing pure sulfur (~1 gm, Sigma-Aldrich) was placed in the upstream of quartz tube. Argon was used as a carrier gas to convey sulfur vapor species to the downstream Mo films. The tube was pumped down to a pressure of 10^{-3} Torr and flushed with Ar gas repeatedly to guarantee a favorable growth atmosphere. In the flow atmosphere of 200 sccm Ar with a chamber pressure of 5 Torr, the furnace was heated to 600 °C at the center

zone in 30 min. After 60 min, the furnace was cooled down naturally to room temperature. The samples S_1 , S_2 , S_3 , S_4 , and S_5 corresponds to MoS₂ films converted for Mo films deposited at different sputtering times of 4, 10, 30, 60, and 180 s, respectively.

Characterization. The height measurement of Mo and MoS₂ films was performed by an AFM (Parks NX-10) system. Raman spectra of MoS₂ thin films were collected in an Almega XR Raman spectrometer equipped with an Olympus BX51 microscope with motorized stage, mapping capabilities, and spatial resolution down to 1 μ m, and the wavelength of the laser is 532 nm. The MoS₂ films were characterized by a TECNAI F20 S-Twin (FEI Co, Netherland) transmission electron microscope (TEM) operating at an accelerating voltage of 120 kV equipped with energy-dispersive spectroscopy (EDS). The cross section of the TEM sample was lifted-out with a Quanta 3D dual-focused ion beam (FIB) on the Mo half grid for quantitative EDS analysis. The electrical measurements were performed at room temperature using an Agilent B2912A precision source/measure unit (2 ch, 10 fA, 210 V, 3A DC/10.5A pulse) connected to a probe station with 20 μ m size tungsten probes. The FET test on each sample was performed at 15 different regions in large-area films to obtain the statistics of the electrical performance. All electrical measurements on MoS₂ devices were performed in vacuum in order to isolate the effect of ambient oxygen and water.

AUTHOR INFORMATION

Corresponding Author

*E-mail: wonbong.choi@unt.edu. Telephone: +1-940-369-7673 (W.C.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the financial support from a start-up fund from University of North Texas. W.C. acknowledge a partial support from the KIST Institutional Program.

REFERENCES

(1) Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 2010, 5, 487-496.

(2) Wang, R.; Chien, H.-C.; Kumar, J.; Kumar, N.; Chiu, H.-Y.; Zhao, H. Third-Harmonic Generation in Ultrathin Films of MoS₂. ACS Appl. Mater. Interfaces **2014**, *6*, 314–318.

(3) Wang, Q. H.; Zadeh, K. K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. *Nat. Nanotechnol.* **2012**, *7*, 699–712.

(4) Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS₂ Phototransistors. *ACS Nano* **2012**, *6*, 74–80.

(5) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. *Nature* **2005**, 438, 197–200.

(6) Palacios, T. Graphene Electronics: Thinking outside the Silicon Box. *Nat. Nanotechnol.* **2011**, *6*, 464–465.

(7) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS₂ Transistors. *Nat. Nanotechnol.* **2011**, *6*, 147–150.

(8) Liu, Y.; Nan, H.; Wu, X.; Pan, W.; Wang, W.; Bai, J.; Zhao, W.; Sun, L.; Wang, X.; Ni, Z. Layer-by-Layer Thinning of MoS_2 by Plasma. ACS Nano **2013**, 7, 4202–4209.

(9) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-Dimensional Atomic Crystals. *Proc. Natl. Acad. Sci. U.S.A.* **2005**, *102*, 10451–10453.

(10) Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated Circuits Based on Bilayer MoS_2 Transistors. *Nano Lett.* **2012**, *12*, 4674–4680.

ACS Applied Materials & Interfaces

(11) Jena, D.; Konar, A. Enhancement of Carrier Mobility in Semiconductor Nanostructures by Dielectric Engineering. *Phys. Rev. Lett.* **2007**, *98*, 136805.

(12) Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y.; Jin, Y. W.; Lee, S. Y.; Jena, D.; Choi, W.; Kim, K. High-Mobility and Low-Power Thin-Film Transistors Based on Multilayer MoS₂ Crystals. *Nat. Commun.* **2012**, 3, 1011.

(13) Hu, J. J.; Zabinski, J. S.; Bultman, J. E.; Sanders, J. H.; Voevodin, A. A. Encapsulated Nanoparticles Produced by Pulsed Laser Ablation of MoS₂-Te Composite Target. *Cryst. Growth Des.* **2008**, *8*, 2603–2605.

(14) Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L. Van der Waals Epitaxy of MoS₂ Layers Using Graphene as Growth Templates. *Nano Lett.* **2012**, *12*, 2784–2791.

(15) Ma, X.; Shi, M. Thermal Evaporation Deposition of Few-Layer MoS₂ Films. *Nano-Micro Lett.* **2013**, *5*, 135–139.

(16) Parilla, P. A.; Dillon, A. C.; Parkinson, B. A.; Jones, K. M.; Alleman, J.; Riker, G.; Ginley, D. S.; Heben, M. J. Formation of Nanooctahedra in Molybdenum Disulfide and Molybdenum Diselenide Using Pulsed Laser Vaporization. *J. Phys.Chem. B* **2004**, *108*, 6197–6207.

(17) Altman, E. I.; Droubay, T.; Chambers, S. A. Growth of MoO_3 Films by Oxygen Plasma Assisted Molecular Beam. *Thin Solid Films* **2002**, 414, 205–215.

(18) Chen, X.; Fan, R. Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides. *Chem. Mater.* **2001**, *13*, 802–805.

(19) Peng, Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS₂ and MoSe₂. *Chem. Lett.* **2001**, *30*, 772–773.

(20) Matte, H.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS₂ and WS₂ Analogues of Graphene. *Angew. Chem., Int. Ed.* **2010**, *49*, 4059–4062.

(21) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. *Nano Lett.* **2009**, *9*, 30–35.

(22) Ci, L.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M. Atomic Layers of Hybridized Boron Nitride and Graphene Domains. *Nat. Mater.* **2010**, *9*, 430–435.

(23) Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J.-C.; Ajayan, P. M.; Lou, J. Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers. *Nat. Mater.* **2013**, *12*, 754–759.

(24) Li, X. L.; Li, Y. D. Formation of MoS_2 Inorganic Fullerenes (IFs) by the Reaction of MoO_3 Nanobelts and S. *Chem.—Eur. J.* **2003**, *9*, 2726–2731.

(25) Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykovd, S.; Kalantar-zadeh, K. Atomically Thin Layers of MoS_2 via a Two Step Thermal Evaporation-Exfoliation Method. *Nanoscale* **2012**, *4*, 461–466.

(26) Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; J. L. Large-Area Vapor-Phase Growth and Characterization of MoS₂ Atomic Layers on a SiO₂ Substrate. *Small* **2012**, *8*, 966–971.

(27) Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-Layer MoS_2 Films. *Sci. Rep.* **2013**, *3*, 1866.

(28) Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. *Angew. Chem., Int. Ed.* **2011**, *50*, 11093–11097.

(29) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS_2 . ACS Nano 2010, 4, 2695–2700.

(30) Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-Scale MoS_2 Thin Layers Prepared by MoO_3 Sulfurization. *Nanoscale* **2012**, *4*, 6637–6641. (31) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS₂: Evolution of Raman Scattering. *Adv. Funct. Mater.* **2012**, *22*, 1385–1390.

(32) Laskar, M. R.; Ma, L.; Kannappan, S.; Park, P. S.; Krishnamoorthy, S.; Nath, D. N.; Lu, W.; Wu, Y.; Rajan, S. Large Area Single Crystal (0001) Oriented MoS₂. *Appl. Phys. Lett.* **2013**, *102*, 252108.

(33) Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence Quenching in Gold-MoS₂ Hybrid Nanoflakes. *Sci. Rep.* **2014**, *4*, 5575.

(34) Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS₂ and WSe₂ Nanosheets. *Acc. Chem. Res.* **2014**, *47*, 1067–1075.

(35) Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S.-Y. Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS_2 Nanosheets. *ACS Appl. Mater. Interfaces* **2014**, *6*, 7084–7089.

(36) Venables, J. A. Introduction to Surface and Thin Film Processes, 4th ed.; Cambridge University Press: Cambridge, U.K., 2000.

(37) Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M.; Javey, A. MoS₂ p-Type Transistors and Diodes Enabled by High Work Function MoO_x Contacts. *Nano Lett.* **2014**, *14*, 1337–1342.

(38) Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-Type and p-Type Conductivity of MoS₂ Monolayers on a SiO₂ Substrate. *Phys. Rev. B* **2013**, *87*, 165402.

(39) Dolui, K.; Rungger, I.; Pemmaraju, C. D.; Sanvito, S. Possible Doping Strategies For MoS_2 Monolayers: An ab Initio Study. *Phys. Rev. B* **2013**, *88*, 075420.

(40) He, J.; Wu, K.; Sa, R.; Li, Q.; Wei, Y. Magnetic Properties of Nonmetal Atoms Absorbed MoS₂ Monolayers. *Appl. Phys. Lett.* **2010**, *96*, 082504.

(41) Ataca, C.; Ciraci, S. Functionalization of Single-Layer MoS₂ Honeycomb Structures. J. Phys. Chem. C 2011, 115, 13303–13311.

(42) Fuhr, J. D.; Saul, A.; Sofo, J. O. Scanning Tunneling Microscopy Chemical Signature of Point Defects on the MoS_2 (0001) Surface. *Phys. Rev. Lett.* **2004**, *92*, 026802.

(43) Aleshin, A. N.; Lee, J. Y.; Chu, S. W.; Kim, J. S.; Park, Y. M. Mobility Studies of Field-Effect Transistor Structures Based on Anthracene Single Crystals. *Appl. Phys. Lett.* **2004**, *84*, 5383–5385.

(44) Lee, Y.-H.; Zhang, X.-Q.; Zhang, W.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.; Wang, J. T.-W.; Chang, C.-S.; Li, L.-J.; Lin, T.-W. Synthesis of Large-Area MoS₂ Atomic Layers with Chemical Vapor Deposition. *Adv. Mater.* **2012**, *24*, 2320–2325.

(45) Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; Lai, C.-S.; Li, L.-J. Growth of Large-Area and Highly Crystalline MoS₂ Thin Layers on Insulating Substrates. *Nano Lett.* **2012**, *12*, 1538–1544.

(46) Lin, M.-W.; Liu, L.; Lan, Q.; Tan, X.; Dhindsa, K. S.; Zeng, P.; Naik, V. M.; Cheng, M. M.; Zhou, Z. Mobility Enhancement and Highly Efficient Gating of Monolayer MoS₂ Transistors with Polymer Electrolyte. *J. Phys. D: Appl. Phys.* **2012**, *45*, 345102.

(47) Zhang, W.; Huang, J.-K.; Chen, C.-H.; Chang, Y.-H.; Cheng, Y.-J.; Li, L.-J. High-Gain Phototransistors Based on a CVD MoS₂ Monolayer. *Adv. Mater.* **2013**, *25*, 3456–3461.

(48) Wu, W.; De, D.; Chang, S.-C.; Wang, Y.; Peng, H.; Bao, J.; Pei, S.-S. High Mobility and High on/off Ratio Field-Effect Transistors Based on Chemical Vapor Deposited Single-Crystal MoS₂ Grains. *Appl. Phys. Lett.* **2013**, *102*, 142106.

(49) Han, L.; Mandlik, P.; Cherenack, K. H.; Wagner, S. Amorphous Silicon Thin-Film Transistors with Field-Effect Mobilities of $2 \text{ cm}^2/\text{V}$ s for Electrons and 0.1 cm²/V s for Holes. *Appl. Phys. Lett.* **2009**, *94*, 162105.

(50) Poortmans, J.; Arkhipov, V. Thin Film Solar Cells: Fabrication, Characterization and Applications, 1st ed.; John Wiley & Sons: New York, 2006.

(51) Lin, Y.-Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics. *IEEE Electron Device Lett.* **1997**, *18*, 606–608.

ACS Applied Materials & Interfaces

(52) Dong, S.; Bao, C.; Tian, H.; Yan, D.; Geng, Y.; Wang, F. ABAB-Symmetric Tetraalkyl Titanyl Phthalocyanines for Solution Processed Organic Field-Effect Transistors with Mobility Approaching 1 cm² V⁻¹ s⁻¹. Adv. Mater. **2013**, 25, 1165–1169.